
ShEx vs SHACL
RDF Validation tutorial

Eric Prud'hommeaux
World Wide Web Consortium

MIT, Cambridge, MA, USA

Harold Solbrig
Mayo Clinic, USA

Jose Emilio Labra Gayo
WESO Research group

University of Oviedo, Spain

Iovka Boneva
LINKS, INRIA & CNRS

University of Lille, France

ShEx vs SHACL

Simple example

<User> {
schema:givenName xsd:string {1,3}
}

Try it with SHACL: http://goo.gl/UCSvmATry it with ShEx: http://goo.gl/GdQuaS

:User a sh:Shape ;
sh:property [
sh:predicate schema:name ;
sh:minCount 1;
sh:maxCount 3;
sh:datatype xsd:string ;

] .

Both ShEx and SHACL behave similarly with simple examples

http://goo.gl/UCSvmA
http://goo.gl/GdQuaS

Some differences

Underlying philosophy

Notion of a shape

Abstract syntax

Default cardinalities

Shapes and Classes

Recursion

Repeated properties

Extension mechanism

Underlying philosophy

ShEx is more Grammar oriented

Shapes look like grammar rules

More focus on validation results

SHACL is more Constraint oriented

Shapes = collections of constraints

More focus on validation errors

Notion of shape

Shapes in ShEx are defined as a label and a set of rules

The rules define the grammar that must be satisfied by a focus node

Shapes in SHACL contain Scopes, Filters and constraints

Scopes define which nodes are selected for validation

Filters allow more fine-grain selection of those nodes

Constraints are collections of constraints on a focus node

Those constraints are conjunctive by default

Abstract syntax

ShEx defines an abstract syntax

Its easy to have different serialization formats (ShExC, JSON, RDF, ...)

..and to check what is a well formed Schema

SHACL is defined as an RDF vocabulary

It supports the serialization formats from RDF

Difficult to check what is a well formed Shapes graph

See Issue 52: https://www.w3.org/2014/data-shapes/track/issues/52

https://www.w3.org/2014/data-shapes/track/issues/52

Default cardinalities

ShEx: default = (1,1)

<User> {
schema:givenName xsd:string
schema:lastName xsd:string
}

:User a sh:Shape ;
sh:property [
sh:predicate schema:givenName ;
sh:datatype xsd:string ;
];
sh:property [
sh:predicate schema:lastName ;
sh:datatype xsd:string ;
] .

:alice schema:givenName "Alice" ;
schema:lastName "Cooper" .

:bob schema:givenName "Bob", "Robert" ;
schema:lastName "Smith", "Dylan" ;

SHACL: default = (0,unbounded)

Shapes and Classes

ShEx is only concerned with RDF nodes

No interaction between validation and inference

Classes and just nodes with some rdf:type arc

ShEx can be used pre-/post-validation

SHACL offers several mechanism that may interact with inference

Implicit scope Class: identifies a Shape with a Class

Triggers validation on all nodes that belong to that class (or its subclasses)

sh:class. Checks the rdf:type arc of a node

It also checks rdfs:subClassOf* relationships

Repeated properties

ShEx supports constraints on repeated properties

SHACL need qualifiedValueShape or partitions

Those features are still under development

Recursion

ShEx supports recursion

It is possible to define and validate cyclic data structures

SHACL doesn't support recursion

Validation of cyclic data structures may require that every node has
discriminating rdf:type arc

Allowing recursion in SHACL is still under discussion

Extension mechanism

Extend the core language with more expressive features

Example: validate that "area" in a rectangle is effectively the product of
"base" by "height"

ShEx defines Semantic Actions which are language agnostic
%{language ...commands %}

SHACL predefines an extension mechanism in SPARQL
In principle, it is intended that other languages could be used

